Searching for open clusters with clustering algorithms in Gaia era

Mario Morvan

University of Barcelona & Mines Saint-Etienne

End-of-Master Project

Outline

- 1. Open Clusters (OCs)
- 2. Astrometry in Gaia era
- 3. Density-based clustering
- 4. Searching OCs in TGAS
- 5. Scaling-up for next releases

- \rightarrow quick intro
- \rightarrow Big astrometric Data
- \rightarrow kNNs, DBSCAN, OPTICS
- \rightarrow method & results

Open clusters

- Bound groups of stars
- Share various properties:
 - Age
 - Metallicity
 - Position, velocities
- Photometry:

Pleiades (WEBDA)

~3000 known OCs

Astrometry in Gaia Era Gaia Mission

M12

M72

M30

Galaxies

Onen clusters

Globular clusters

NGC 2419

http://sci.esa.int/gaia/58281-gaia-s-first-sky-map-annotated/

Leo

NGC 310

NGC 2298

NGC 1851

NGC 2243

M79

GC 4372 NGC 2808

Leo II

MAG

47 Tuc - NGC 362

NGC 1261

Fornax

NGC 5897 NGC 5694

JGC 5834

• ESA's mission (2013 \rightarrow 2022)

NGC 188

Indromed

NGC 119

- Beginning of "Big Astrometric Data" NGC 5455
 NGC 5455
- 5-astrometric solution: α , δ , μ_{α^*} , μ_{δ} , π
- But also: photometry & radial velocities

NGC 55 NG Sculptor

Astrometry in Gaia Era Astrometric catalogues

Catalogue	Release Date	Nb of Sources with astrometry	Limiting Magnitude	Size	Radial Velocities
Hipparcos	1997	117,955	12	~12 MB	Not available
TGAS	Sept 2016	2,057,050	12	~408 MB	Not available
GDR2	April 2018	>109	>20	~5 TB	G<12
Final GDR	2022	>109	>20	~10 TB ?	All

https://www.cosmos.esa.int/web/gaia/release

Astrometry in Gaia era Astrometric Catalogues precision

• Parallax standard error: from mas to 10µas

Madics-Mestro 2017 - Mario Morvan

Astrometry in Gaia Era Our Problem

- Fully-astrometric and unsupervised detection of open clusters
 - Do not adress membership determination
 - Use photometry and OC catalogs (only) for subsequent analyze
- *Idea*: use clustering algorithms to detect OCs as 5D high astrometric concentrations
- Related works :
 - GAO ET AL. 2013, GAO 2014 and BHATTACHARYA ET AL. 2016 →
 membership with DBSCAN
 - GAO 2017 \rightarrow close detection with kNND in TGAS

Density-based clustering

- Clustering: find groups of *close* points in data sets
- Types:
 - Partition-based \rightarrow need to fix a number of cluster
 - Hierarchical \rightarrow criterion to stop?
 - Distribution-based ightarrow requires knowledge and limits scope

Density-based

- → Clusters = contiguous regions of high-density separated by low density regions
- \rightarrow Naturally deals with noise
- \rightarrow Arbitrary number and shapes for its clusters

Density-based Clustering DBSCAN

- 'Density-Based Spatial Clustering of Applications with Noise' (ESTER ET AL. 1996)
- Parameters: (minPts, ε)
- ε-Neighborhood –

Objects within a radius of ϵ from an object.

"High density" region - ε-Neighborhood of an object contains at least MinPts objects

Density-based Clustering Choice of Epsilon with kNND

 \rightarrow kNN/DBSCAN correspondance: p is a DBSCAN core \iff kNND(p) < ε

 $kNND(p) < \epsilon$ with k=minPts-1

Density-based Clustering Automatic choice of Epsilon with kNND

1D-density estimations with Gaussian Kernel Min of kNN distribution of resampled stars \rightarrow upper limit for ϵ

Madics-Mestro 2017 - Mario Morvan

Density-based clustering OPTICS

"Ordering Points To Identify the Clustering Structure" (ANKERST ET AL. 1999)

What if there are several densities of clusters?

Density-based clustering OPTICS

Figure 4. Core-distance(o), reachability-distances r(p_1 ,o), r(p_2 ,o) for MinPts=4

Madics-Mestro 2017 - Mario Morvan KRIE

KRIEGEL ET AL. 2011

13

Searching OCs in TGAS

• Start with 2,057,050 stars with (*l,b*, $\mu_{\alpha*}$, μ_{δ} , π)

Searching OCs in TGAS Preprocessing

- Galactic disk, cleaning extreme values
- division into rectangles, normalization

Madics-Mestro 2017 - Mario Morvan

Searching OCs in TGAS Preprocessing

- Galactic disk, cleaning extreme values
- division into rectangles, normalization

Madics-Mestro 2017 - Mario Morvan

Searching OCs in TGAS Epsilon determination

• KNND computation in each square

Searching OCs in TGAS Epsilon determination

• kNND of 1D-kde of parameters

Madics-Mestro 2017 - Mario Morvan

Searching OCs in TGAS Running DBSCAN

- Remove clusters on the edge
- Merge results with 2 shifted grids

Searching OCs in TGAS A matched OC

NGC_2287

Madics-Mestro 2017 - Mario Morvan

Searching OCs in TGAS Some results

- Seeing matches while Merging 15 clusterings:
 - ≤ 1000 matches with catalogued OCs
 - ≤80 OB associations
 - ≤ 50 removed OCs
- But also a lot of non-matched DB clusters
- \rightarrow filters to look at most interesting cases
- \rightarrow 60 selected interesting non-matched clusters

Searching OCs in TGAS A non-matched cluster

Madics-Mestro 2017 - Mario Morvan

Searching OCs in TGAS Non matched clusters

FIGURE 7.4: Position of 60 clusters candidates in red and 2040 Dias catalogued open clusters in green in rectangular Galactic coordinates. On the upper plot, the clusters were projected onto the Galactic XY-plane and the curved lines represent the spiral arms as proposed by Reid et al. (2014). On both plots, yellow circles locate the Sun's position. Dias open clusters extend much more from th Sun, since strong relative errors in parallaxes and proper motions make a fully-astrometric detection of open clusters with TGAS data complicated above 2pc from the Sun.

Scaling-up to subsequent GDR

- Gaia Data Release 2 will have to be stored in a computer cluster
- Area density of stars x500
 →Adapt the grid, minPts...
 - \rightarrow Intermediate filters
- **kNN, DBSCAN and OPTICS are parallelizable** (ZHANG ET AL. 2012, HE ET AL. 2011)
- \rightarrow Soon in Spark?
- In the end, include radial velocities?

Conclusions

- Astrometry great for OCs
- Such a method using DB clustering is:
 - Promising
 - Largely improvable
 - Scalable
- GDR2 will
 - Enrich the knowledge of known OCs
 - Decide all the uncertain cases
 - Allow to discover many more

Thank you !

Any question, comment suggestion... ?