
https://github.com/COINtoolbox
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Emille E. O. Ishida

Laboratoire de Physique de Clermont - Université Clermont-Auvergne
Clermont Ferrand, France

The Cosmostatistics InitiativeThe Cosmostatistics Initiative

MAESTRO, June/2017 



 3

Long term: Contribute to the establishment of 

AstrostatisticsAstrostatistics and AstroinformaticsAstroinformatics as full 

fledged scientific disciplines
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Long term:

Short term:

Make astronomers, statisticians, computer scientists and 
data experts understand each other … 

WHILE doing science!

Contribute to the establishment of 

AstrostatisticsAstrostatistics and AstroinformaticsAstroinformatics as full 

fledged scientific disciplines ASAP!
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COIN's activities 
cannot be merely 

pedagogical
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Long term: Contribute to the establishment of 

AstrostatisticsAstrostatistics and AstroinformaticsAstroinformatics as full 

fledged scientific disciplines ASAP!

Short term:

Make astronomers, statisticians, computer scientists and 
data experts understand each other … 

WHILE doing science!

Directive:

Significantly contribute to the CV of our members
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Long term: Contribute to the establishment of 

AstrostatisticsAstrostatistics and AstroinformaticsAstroinformatics as full 

fledged scientific disciplines ASAP!

Short term:

Make astronomers, statisticians, computer scientists and 
data experts understand each other … 

WHILE doing science!

Try to remember:
they might work as robots, but they are not!
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The COIN Residence Program - CRP
Annual meetings

Conference

Workshop

Hackathon
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The COIN Residence Program - CRP
Annual meetingsA non-profit start-up?

John Johnson/HBO

https://www.theroadtosiliconvalley.com/moving/comparing-sydney-silicon-valley/
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The COIN Residence Program - CRP
Annual meetingsA non-profit start-up?

John Johnson/HBO

https://www.theroadtosiliconvalley.com/moving/comparing-sydney-silicon-valley/

CRP #2, UK, 2015

CRP #3, Budapest, 2016

CRP #2, UK, 2015
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Choosing the 
participants
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Who wants to 
collaborate?
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The COIN Residence Program

Once a year

Who wants to 
collaborate?

1 week

1 house

Lots of coffee

What we can guarantee up front

paper

What we can NOT guarantee up front

Talks

What we require from participants
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Choosing the 
projects
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1. What do you know how to do?
2. What do you like to do?
3. What would you like to learn?

Questions posed by the organizers
Participants can propose projects. 
Everyone votes to which project will be selected
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1. What do you know how to do?
2. What do you like to do?
3. What would you like to learn?

Questions posed by the organizers
Participants can propose projects. 
Everyone votes to which project will be selected

From CRP #2, UK - 2015
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Does it work?
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COIN products

60 researchers from 15 countries

In 3 years

+ 1 galaxy catalog
+ 1 GMM tutorial
+ 2 photoz catalogs

Rafael S. de Souza
(head)  - statistics

Alberto Krone-Martins
astrometry

Emille E. O. Ishida
SN cosmology

Infographic by Rafael S. de Souza

COIN products are open source!
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Example from 
CRP #4, Budapest

2016
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The problem with text-book ML:The problem with text-book ML:

              RepresentativenessRepresentativeness

Spec → training/validation
Photo → test

For photo-z

(supervised regression)
Features (columns)
distributions
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What if you wish 
to try a method 

which address the 
realistic 

situation?
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?



  

COIN Residence Program #3COIN Residence Program #3
http://iaacoin.wixsite.com/crp2016http://iaacoin.wixsite.com/crp2016  

http://iaacoin.wixsite.com/crp2016


  

Teddy catalogue
The effect of color coverage 

Beck, Lin, Ishida et al., astro-ph:1701.08748, MNRAS (2017), 468, issue 4, pp. 4323-4339 – from CRP #3 



  

Beck, Lin, Ishida et al., astro-ph:1701.08748, MNRAS (2017), 468, issue 4, pp. 4323-4339 – from CRP #3 



  

Beck et al., astro-ph:1701.08748, MNRAS in press

Empirical methods



  

https://github.com/COINtoolbox/photoz_catalogues
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Potential solution:Potential solution: Active Learning Active Learning
SAMSI & COIN, in prep
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The future of 
COIN
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https://iaacoin.wixsite.com/crp2017



  

Find people .



  

Find people .

Solve bureaucracy



  

Find people .

Solve bureaucracy



  

Find people .

Solve bureaucracy



  

Find people .

Solve bureaucracy

Let it go .



  

IAA facebook page COIN on twitter

Registrations will open July 7th!



  

Do we need to re-
think the 

academic model?



  



https://github.com/COINtoolbox
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Attempted solutions:Attempted solutions: Domain Adaptation Domain Adaptation

instance weighting
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Attempted solutions:Attempted solutions: Domain Adaptation Domain Adaptation

instance weighting

supervised regression

Works well when data is not sparse, 
and there is coverage!
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Attempted solutions:Attempted solutions: Domain Adaptation Domain Adaptation

instance weighting

supervised regression

If there is no coverage, identify 
problematic areas and discard!

Works well when data is not sparse, 
and there is coverage!
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Beck, Lin, Ishida et al., astro-ph:1701.08748, MNRAS (2017), 468, issue 4, pp. 4323-4339 – from CRP #3 
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Beck, Lin, Ishida et al., astro-ph:1701.08748, MNRAS (2017), 468, issue 4, pp. 4323-4339, from CRP #3 

Error distributions
correlate with features
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Beck, Lin, Ishida et al., astro-ph:1701.08748, MNRAS (2017), 468, issue 4, pp. 4323-4339 – from CRP #3 
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Potential solution:Potential solution: Active Learning Active Learning
SAMSI & COIN, in prep
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Background:Background: Active Learning in Astronomy Active Learning in Astronomy

supervised classification
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Background:Background: Active Learning in Astronomy Active Learning in Astronomy

Dhar Gupta et al. (incl. Ishida), 2016 IEEE Symposium in Computational Intelligence, Athens 

supervised classification
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How are spectroscopic sets constructed?How are spectroscopic sets constructed?
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How are spectroscopic sets constructed?How are spectroscopic sets constructed?
Take spectra for learning and determine everything else
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Alternative approachAlternative approach
Landmark selection
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Landmark selection
Alternative approachAlternative approach
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Landmark selection
Alternative approachAlternative approach
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Landmark selection
Alternative approachAlternative approach
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Landmark selection + Active Learning
Alternative approachAlternative approach
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Landmark selection + Active Learning
Alternative approachAlternative approach
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Background:Background: Active Learning in Astronomy Active Learning in Astronomy

Dhar Gupta et al. (incl. Ishida), 2016 IEEE Symposium in Computational Intelligence, Athens 

supervised classification
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Active Learning 
for supervised 

regression?
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Active Learning 
for supervised 

regression?
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Main tasks:

Clustering:
- SN Ia spectra characterization
- galaxy spectral classification
…

Anomaly/Novelty detection:
- unforeseen  new objects
- detection error analysis
- identification of predicted objects
...

Regression:
- photometric redshift
- stellar parameters determination
...

Classification:
- detection
- star/galaxy separation
- galaxy morphology
- variable stars 
- supernova
…
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What about the 
future?
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urgent:urgent: Build a support community Build a support community
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urgent:urgent: Build a support community Build a support community



 72

urgent:urgent: Build a support community Build a support community

Solve bureaucracy
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urgent:urgent: Build a support community Build a support community

Solve bureaucracy

The REAL goal is HUMAN learning
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