

Automated reliability assessment for redshift measurements

S. Jamal, V. Le Brun, O. Le Fèvre, D. Vibert, A. Schmitt, C. Surace, P.-Y. Chabaud, M. Gray, F. Fauchier, M. Leurent

Aix Marseille University, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) Marseille, France

I. Introduction II. Redshift estimation III. Reliability assessment IV. ML tests V. Perspectives

I. Introduction

Future large-scale surveys as Euclid will produce a large set of data (1.2 10 ⁹ observed sources)

 \rightarrow Need for <u>fully automated</u> data-processing pipelines.

Primary feature to measure : the redshift z.

Photometric redshifts:

 $\mathbf{z}_{phot, estimate}$: template fitting, artificial neural network, Bayesian inference ^{[1][2]}.

Spectroscopic redshifts:

 $\mathbf{Z}_{\text{spec, estimate}}$: cross-correlation ^{[3][4]}, χ^2 minimization ^{[5][6]}.

*References

- [1] BPZ, N. Benitez, 1998.
- [2] ZEBRA, R. Feldman, 2006.

[3] Darth Fader, D. Machado & al., 2013.

[4] J. Tonry & M. Davis, 1979.

[5] EZ, B. Garilli. & al., 2010
[6] P. Schuecker, 1993

[MaDICS] Maestro 2017

II. **Redshift estimation** - *example* (1/3)

Observed spectrum

Figure 1 – Galaxy spectrum from VVDS (Deep F02)

Spectroscopic redshift ?

II. **Redshift estimation** - *example* (2/3)

Figure 2 – Reference set of spectroscopic templates

II. **Redshift estimation** - *example* (3/3)

[MaDICS] Maestro 2017

III. **zSpec - Quality assessment** (1/8)

Figure 5 – Display of two zspec PDFs, obtained for two different VVDS (Deep field) spectra

Same level of confidence between these 2 redshifts ?

PDF: Probability distribution function **MAP**: Maximum-a-Posteriori estimate

[MaDICS] Maestro 2017

Figure 6 – Display of unimodal and multimodal zspec PDFs, obtained for two VVDS (Deep field) spectra

PDF: Probability distribution function **MAP**: Maximum-a-Posteriori estimate

I. Introduction	II. z-Estimation	III. z-Quality	VI. ML tests	V. Perspectives
			-	

III. **zSpec - Quality assessment** (3/8)

Inputs of an automated system ?

Descriptors of the zPDF

- Significant modes :
- $P(z_{MAP})$
- CR characteristics
- Dispersion of the zPDF

Figure 6 – Display of unimodal and multimodal zspec PDFs, obtained for two VVDS (Deep field) spectra

PDF: Probability distribution function *MAP*: Maximum-a-Posteriori estimate *CR*: credibility region with 95% of probability

[MaDICS] Maestro 2017

	III –C.	0	(4/0)	
I. Introduction	II. z-Estimation	III. z-Quality	VI. ML tests	V. Perspectives

From the *zPDF* of a spectrum s_i , extract a list of L descriptors

 \Rightarrow Feature vector $x_i = (d_1 \quad ... \quad d_L)$

For a set of **N** spectra $(s_i)_{i \in \{1...N\}}$

[MaDICS] Maestro 2017

Ι.	Int	trod	nct	tion
T •		սսս	uu	uon

III. **zSpec - Quality assessment** (7/8)

	I. Introduction	II. z-Estimation	III. z-Quality	VI. ML tests	V. Perspectives		
		٧	I. ML tests (1/	/6)			
S	STED (1) Ruild a reference set						
	Diel (1) Duite e <u>rejerence</u> set						
	Dalabase of reliable spectra						
		CRS .	Fordania V				
Feature matrix X							
			y Quality	, 11 1			
			(C_1, ab_{els})				
			·· (23	IKAINING SEI (Λ, I		

VI. **ML tests** (2/6)

STEP (1) Build a <u>reference</u> set

Using the VVDS^[1] database (~24000 spectra)

Figure 8 – Data representation in a selected 3D space

[1] VIMOS VLT Deep Survey (VVDS) <u>http://cesam.lam.fr/vvds/</u>

[MaDICS] Maestro 2017

STEP (1) Build a <u>reference</u> set

VI. **ML tests** (6/6)

Figure 11 – Redshift reliability predicted clusters of simulated datasets (S1-S2)

V. Perspectives

<u>Result</u> An automated quality assessment of the estimated redshift z_{spec} via:

- Exploiting the redshift *zPDF* p (z | data, priors)
- Machine Learning (ML) algorithms

<u>Next ?</u>

- Fuzzy approach
- Performance evaluation on simulated data
- Advanced ML-algorithms (complex learning scheme? need? etc.)

Thank you for your attention

Criterion $\varepsilon_z \le 0.001$ for example

Figure 12 – Fraction of redshift error $\Delta z/(1+zRef) \le 0.001$ *in each predicted partition*

Redshift error $\varepsilon_z = |z_{Ref} - z_{Estim}| / (1 + z_{Ref})$

Criterion $\varepsilon_z \leq 0.001$ for example

Figure 13 – Fraction of redshift error $\Delta z/(1+zRef) \le 0.001$ *in each predicted partition*

in C1/C2

Correlation [z_{Qual} ; ϵ_z] ?

[MaDICS] Maestro 2017