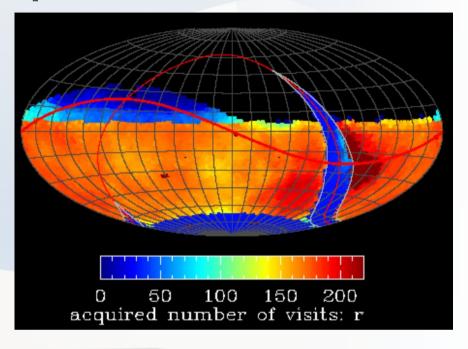

Big Data challenge posed by the

Large Synoptic Survey Telescope

Emmanuel Gangler – UBP – Clermont-Ferrand (France)



- A stage-IV survey :
 - 8.4 m telescope
 - Cerro Pachon (Chili)
 - 3.2 Gpix 9.6⁻ FoV camera
 - 0.2 " pixel
 - First light 2020

capabilities :

- All visible sky in 6 bands (ugrizy) (~2000[□])
- 15 s exposure, 1 visit / 3 days
 r ~24 / visit
- During 10 years !
 ~200 visits/band
- 30TB/day 100 PB/10 years TRO 17 2/19

22/00/14

LSSTc institutions :

Institutional members:

Significantly contribute to LSST project and enabling science

• 37 institutions, 5 being non-US:

Republic of Chile

FR (CNRS / IN2P3)

UK (Oxford & Portsmouth Universities)

CZ (Institute of Physics of the Academy)

International Contributors:

- Support for LSST operations (200 k\$ / PI)
 - 25 institutions

11 of them come from8 European countries

• All have full data access rights

European International contributors

Canary Islands Instituto de Astrofísica de Canarias (IAC)

Croatia Ruđer Bošković Institute (RBI)

France IN2P3

Germany

Ludwig-Maximilians-Universität (LMU) Max Planck Institute for Astrophysics (MPA) Max Planck Institute for Astronomy (MPIA)

Hungary

Eotvos Lorand University (ELTE) Konkolv Observatorv

Serbia Nano Center

Switzerland Eidgenoessische Technische Hochschule Zuerich (Eth Zuerich)

United Kingdom Science and Technology Facilities Council (STFC) - UK LSST Consortium

+ more coming (IT, ...)

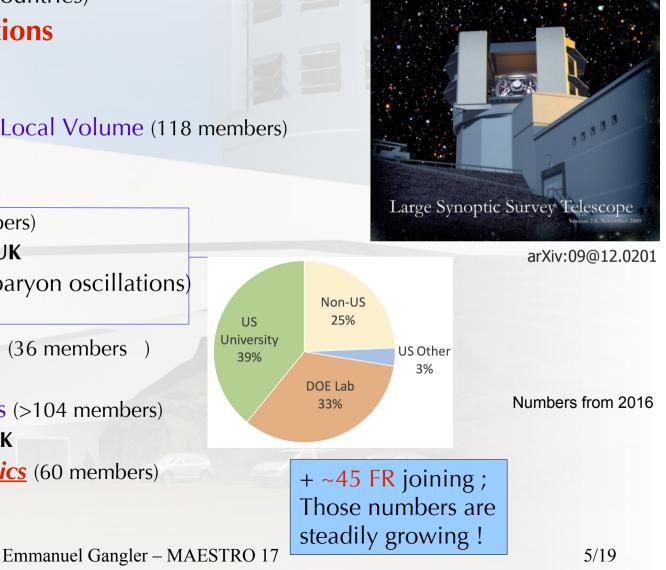
LSST project and Science:

• LSST covers 4 major scientific themes

- Dark Energy, Dark matter
- Mapping Milky Way
- Transient optical sky
- Solar system

• Scientific analysis is not part of the project

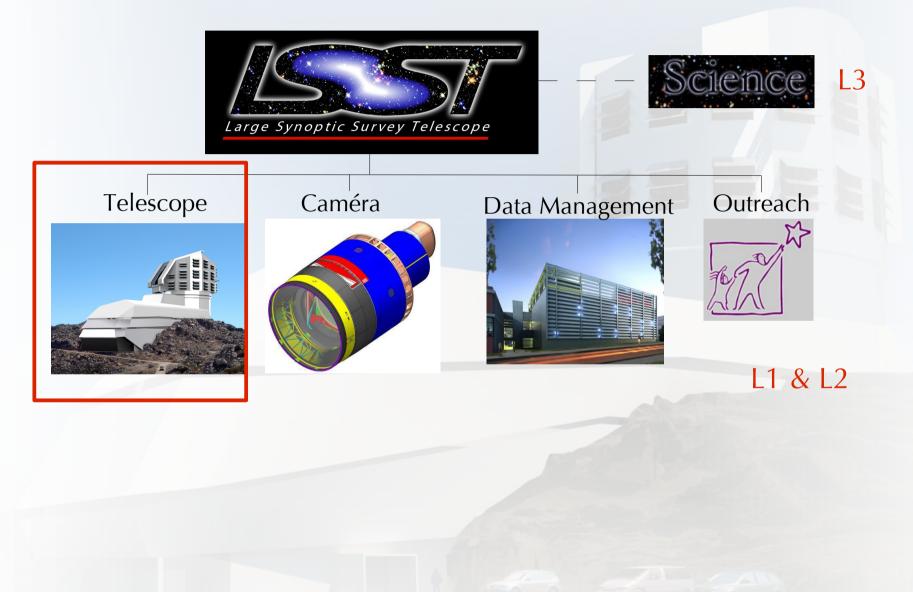
- Conducted by independent collaborations (need data rights)
- With the help of LSSTc Emmanuel Gangler – MAESTRO 17


LSST science

LSST is a world-wide project !

- Around 900 scientists expected to have LSST data rights
- ~450 from US
- ~300 from Europe (9 countries)
- 9 science collaborations
 - Galaxies (46 members)

1 HR, 3 UK


- Stars, Milky Way, and Local Volume (118 members) 2 DE, 4 UK
- Solar System (N/A)
- DESC Dark Energy (565 members)
 - 2 CZ, 1 ES, 65 FR, 70 UK
 - (Large scale structure/baryon oscillations)
 - (Strong lensing)
 - Active Galactic Nuclei (36 members) 1 RS, 1 UK
 - Transient/Variable stars (>104 members)
 - > 2 DE, 1 FR, 1 IL, 1 UK
 - Informatics and statistics (60 members) 1UK

Science Bool

22/06/14

Challenges : building LSST

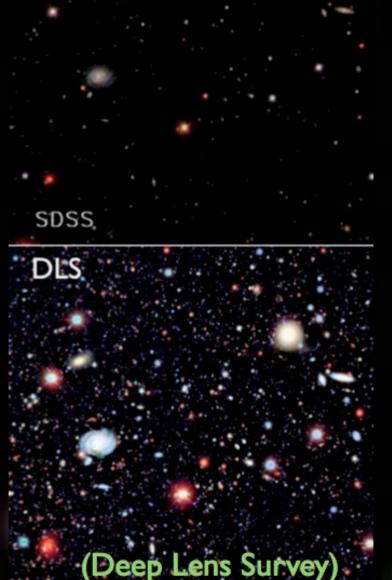
Challenges : building LSST

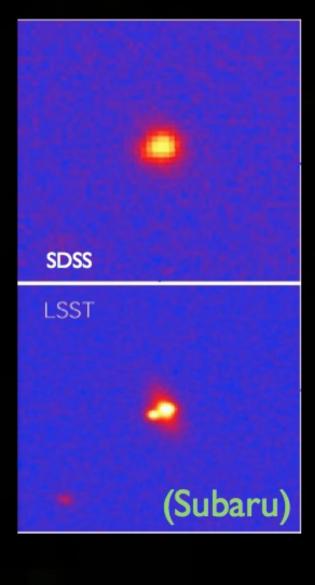
Challenges : building LSST

Most Camera Subsystems Have Been Prototyped

ComCam

38

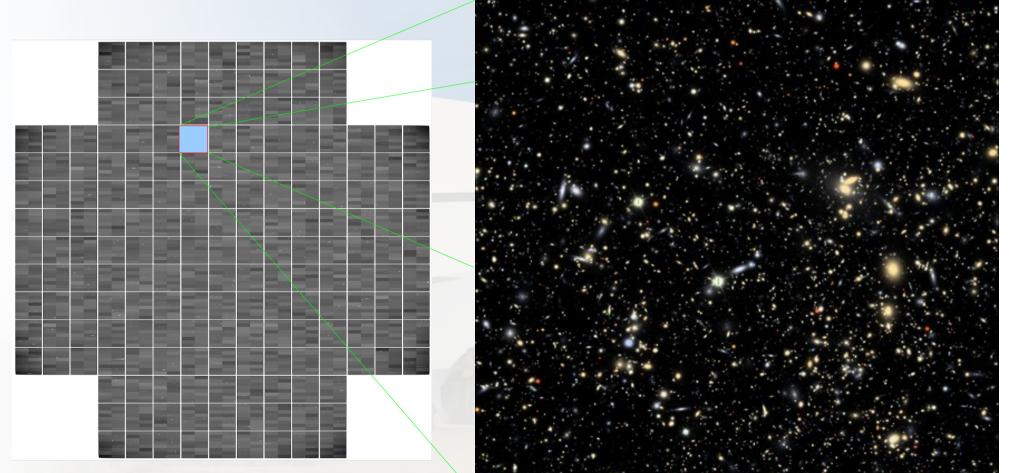

Sizeable hardware investment@ from FR


• Partner of LSST project since 2005

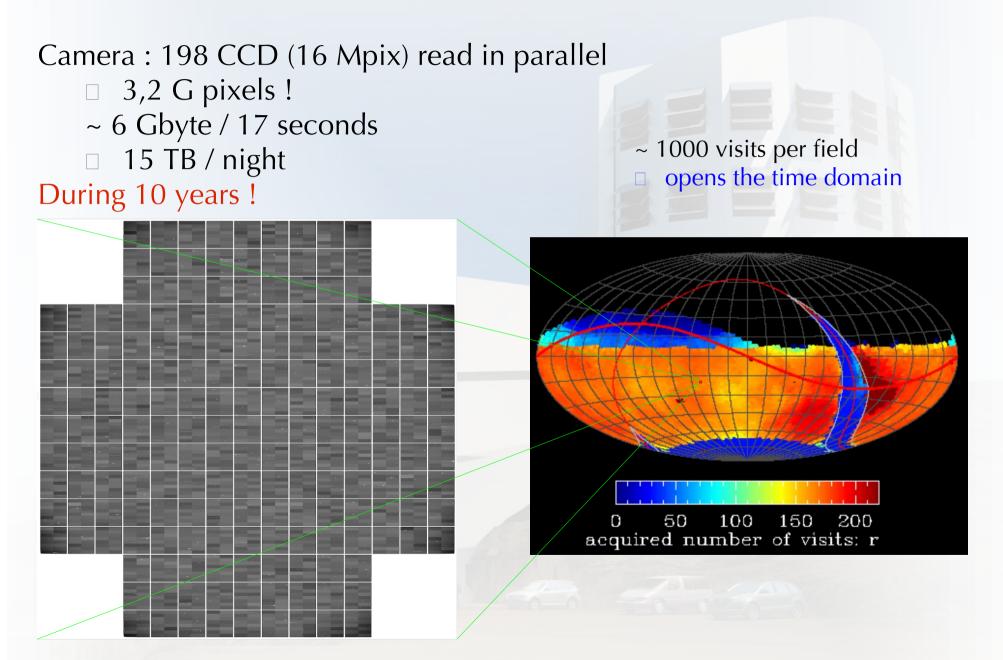
Emmanuel Gangler – MAESTRO 17

Comparing LSST data to SDSS

SDSS-LSST comparison: LSST=d(SDSS)/dt, LSST=SuperSDSS 7x7 arcmin, gri


Slide from Izevic 0/19

LSST data flow


Camera : 189 CCD (16 Mpix) read in parallel

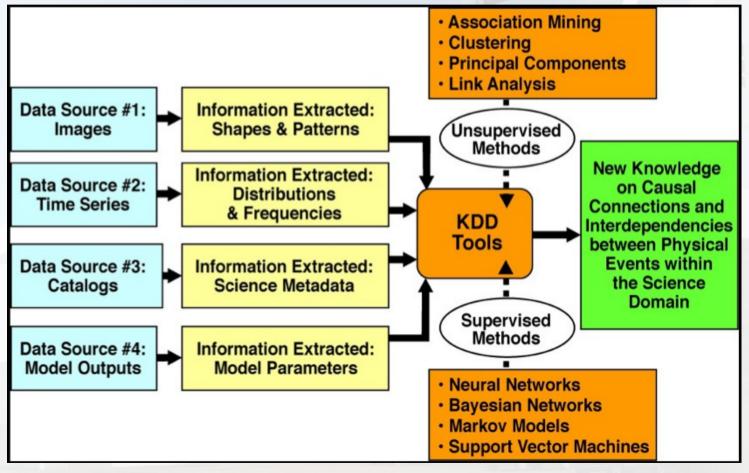
- \square 3,2 G pixels !
- ~ 6 Gbyte / 17 seconds
- □ 15 TB / night

~ 1/1 000 000 000 of LSST data !

LSST data flow

« The data volumes [...] of LSST are so large that **the limitation** on our ability to do science isn't the ability to **collect** the data, **it's the ability to understand** [...] the data »

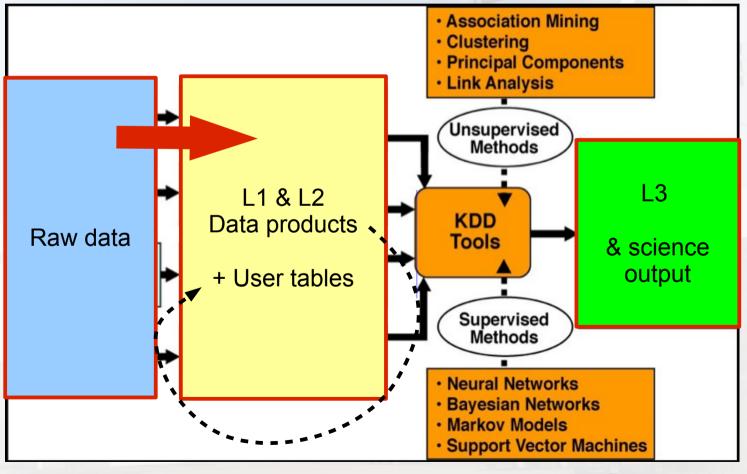
Andrew Conolly (U. Washington)


"How do you turn petabytes of data into scientific knowledge?"

Kirk Borne (George Mason U.)

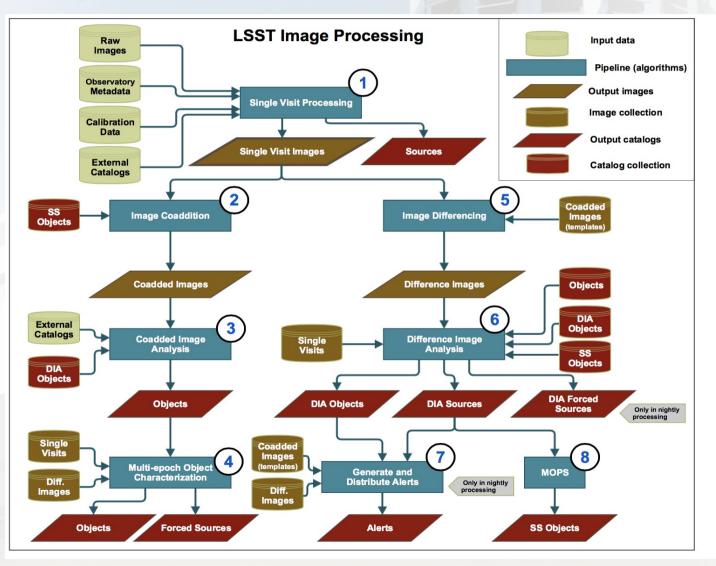
Emmanuel Gangler – MAESTRO 17

How to handle astronomical big data ?


LSST is strongly inspired by Astroinformatics point of view :

Borne 2009

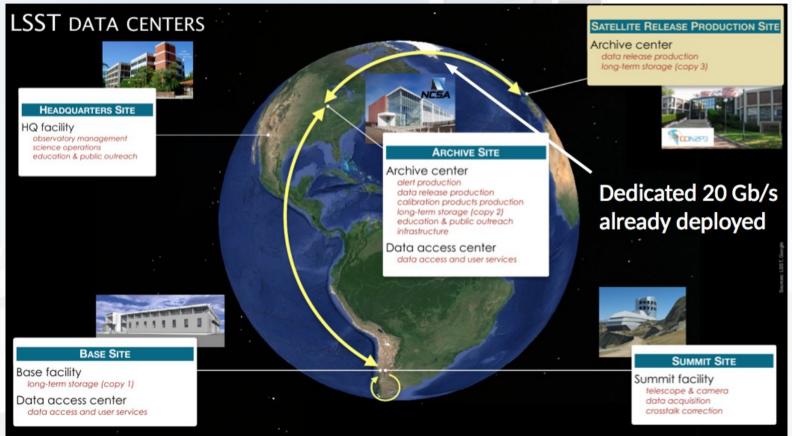
How to handle astronomical big data ?


LSST is strongly inspired by Astroinformatics point of view :

Borne 2009

From Raw data to L1 & L2 products

- Image Processing pipeline by Data Management team
- Validation on precursor data (SDSS Stripe 82, CFHTLS, HSC)



Emmanuel Gangler – MAESTRO 17

From Raw data to L1 & L2 products

• Embarrassingly parallel problem

suited for HTC computing (I/O bound)

Per MoA, FR will:

- Process 50% of data up to L2 proucts
- Host an archive of LSST data

□ There will be a full copy of LSST data in EU

22/06/14

Emmanuel Gangler – MAESTRO 17

CIN564

Available data:

Application Layer -

Generates open, accessible data products with fully documented quality

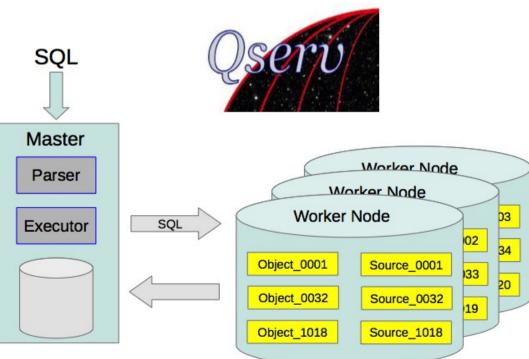
Processing Cadence	Image Category (files)	Catalog Category (database)	Alert Category (database)	
Nightly Data Release (Annual)	Raw science image Calibrated science image Subtracted science image Noise image Sky image Data quality analysis Stacked science image Calibration image RGB JPEG Images Data quality analysis	Source catalog (from difference images) Object catalog (from difference images) Orbit catalog Data quality analysis Object catalog (from calibrated science imarjes) Object catalog (optimally measured properties) Data quality analysis	Transient alert Moving object alert Data quality analysis Alert statistics & summaries Data quality analysis	Alerts : 2 M/day (within 60s.)
	atic: 80 TB image In 6 bands (all visible sky) ynamic: 60 PB	Relation 1-Mar Object Sources Catalogs : 15 F		

Emmanuel Gangler – MAESTRO 17

Impact for database

- Huge data release by DR11:
 - 60 T rows
 - ~10 PB
 - 47. 10⁹ objects (100 TB catalog)
 - 1 500. 10⁹ objets extra (1.2 PB catalog)
 - 9 000. 10⁹ detections "sources" (5 PB catalog)
 - 50 000. 10⁹ measurements "forced sources" (2 PB catalog)
 - Nightly transient alerts: >2.10⁶
- Processing paradigm : characterize first, analyze later
 - Data anlysis is NOT part of the project
- New subfield of astronomy: Astroinformatics (arXiv:0909.3892)

Simulation 1 CCD 4k x 4k

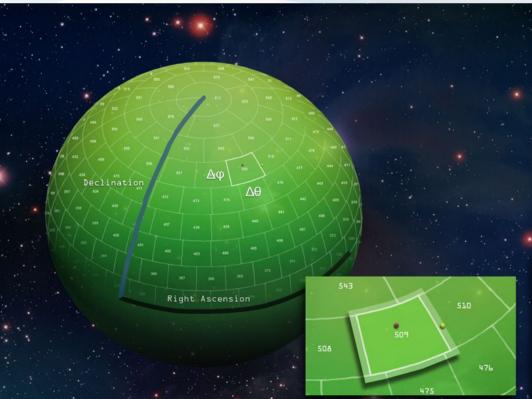

Qserv

Features :

- Shared-nothing MPP RDBMS
- Spatial partitioning with overlap
- Shared scans
- Replicated data
- Fixed-purpose dedicated hardware

Design

- SQL parser
 - Metadata DB
 - User defined function (geometry)
- Communication with xrootd
- MariaDB Backend
- Returns agregate results


Qserv

Partitioning :

- Optimized for spatial joins on neighbors queries
- Spherical partitioning with overlap
- Two level
 - 2nd level materialized on the fly

Limitations

- Only subset of SQL
 - Spatial constraints
 - No subqueries
 - No function in ORDER BY clause
- Some queries can't be treated
 - (time, volume)

Qserv

Shared scan :

- Implementing Concurrency:
 - 100 simultaneous low volume queries (<0.5 GB @ 10/sec)
 - Eg : single object fetch, small spatial region
 - 50 simultaneous high volume queries (< 6GB @ 20/h)
 - Analytics and full scans
- Continuous sequential scans
- Queries attached to appropriate running scan

Qserv test platform

Target for production ~500 nodes clusters in 2 international data-centers

Running now Development platform (CC-IN2P3) 400 cores, 800 GB memory 500 TB storage, => ~65 TB data set on 2*25 nodes

Prototype Data Access Center (NCSA)

500 cores, 4 TB memory 700 TB storage, WISF data loaded Thanks to a partnership with Dell we have deployed a Qserv test bench

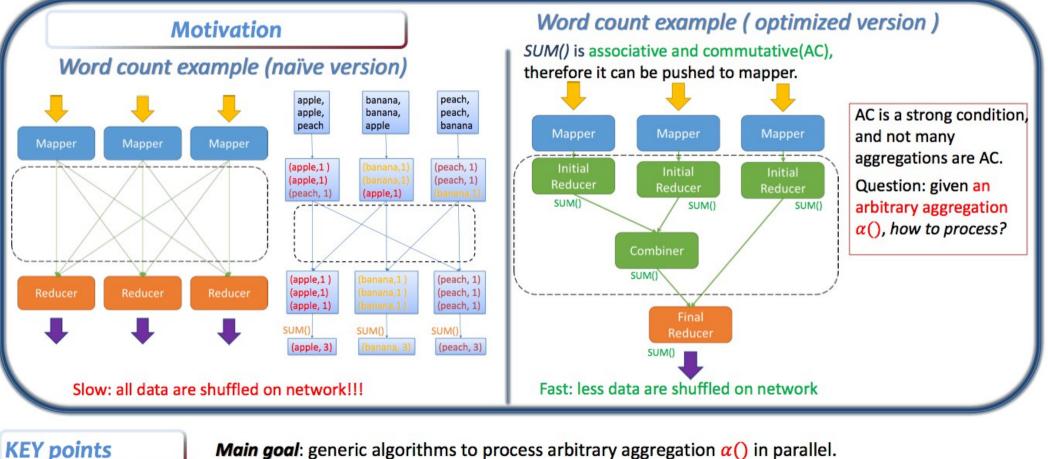
The only test bench currently available in LSST for large scale tests

Lessons learned:

- Qserv works well !
 - Better than specs
- Data deployment is not trivial
 - Network configuration
 - Need 2-3x more disk space
- Large results stress master node
- Each scale increase raises new issues
 - test platforms are vital

Experimentations:

- Can cloud scale to big data ?
 - Openstack computation nodes + Ceph storage (cf. F. Gauet talk)
- Hive/HadoopDB (A. Mesmoudi et al.)
- MongoDB (C. Arnault)
 - Promising results on simple queries
 - Moving to Spark/Dataframe/GeoSpark


Optimization of aggregation queries

Aggregation in Massively Parallel Computing

ZHANG Chao¹², Farouk Toumani¹, Emmanuel GANGLER²

¹ Université Clermont Auvergne, LIMOS CNRS BP 10448, F-63000 Clermont-Ferrand ² Université Clermont Auvergne, LPC CNRS/IN2P3 BP 10448, F-63000 Clermont-Ferrand

22/06/14

Main goal: generic algorithms to process arbitrary aggregation α () in parallel.

en region

LIMOS

La Région

XLDB 2017 in Europe

Session and chairs:

Polystores

Patrick Valduriez, INRIA: Senior researcher, head of Zenith research team.

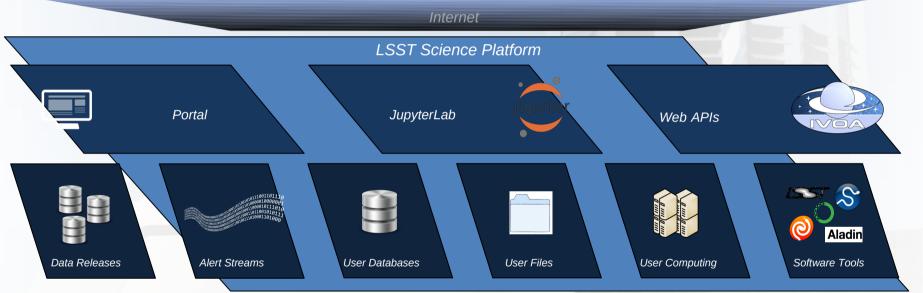
Applications: earth and astronomy, neuroscience

- **Peter Baumann, Jacobs University**: Professor and head of the Large-Scale Scientific Information Systems research group.
- Romulo Goncalves, Nederland eScience Center: Expert in Databases, Data Structures, Distributed Computing.

Modern data management

- Anastasia Ailamaki, EPFL: Professor and Lab Director.
- Mohand-Said Hacid, LIRIS: Professor and Lab Director.

Scaling Cloud to Big Data


- Dirk Duellmann, CERN: Deputy leader of the data and storage services group in CERN's IT.
- Yannick Legré, EGI: Managing director.

1.5 days for main conference ~1 day for Hackaton

Emmanuel Gangler – MAESTRO 17

LSST science platform Accessing LSST data and enabling LSST science

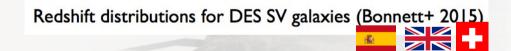
- Statistical analysis of a massive LSST dataset
 - Portal: browsing/vsualization of Pbyte-scale data
 - JupyterLab: user notebooks on DAC computing ressources
 - Web APIs : interface to VO, tools (eg TOPCAT...)

LSST Science cloud

Which knowledge to extract ?

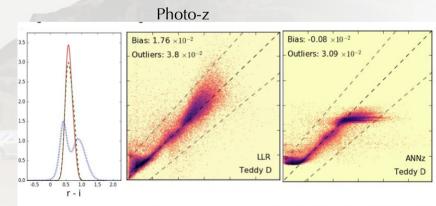
- Some selected topics (Astroinfo...)
 - Interpretation of spectral energy distribution (eg. photo-z)
 - Machine learning vs. template fitting
 - Noise, posteriors pdf vs likelihood, optimal compression ...
 - Spatial correlations
 - Scalibility : can computations be done directly on DB ?
 - Moving/Variable objects
 - Irregular sampling, censored/sparse/missing data,
 - robustness, anomalies, characterization, classification
 - New algorithms from LSST
 - Automatic contamination/completeness tradeoff optimization
 - Robust detection of extremely rare events. Real-time
 - (un-)supervised clustering/classification of massive dataset (in db?)

Example 1 : photo-z

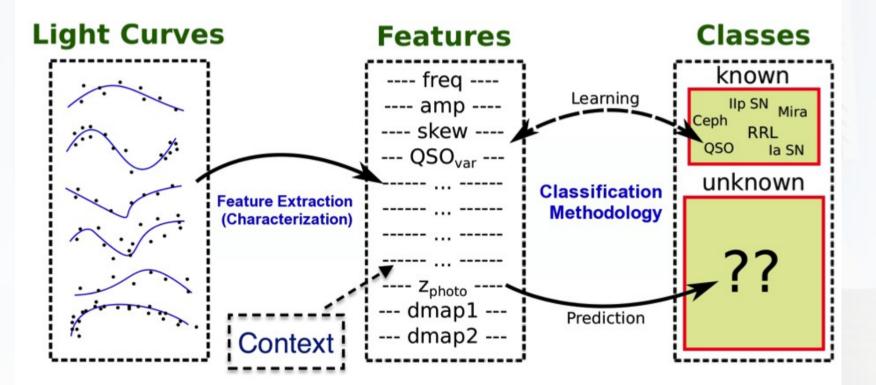

Photo-z are critical for LSST

• Which classifier ?

- Performance issue
- Systematic uncertainty


$0.3 < \! z_{phot_SkyNet} < \! 1.3$ weighted n(z) spec ANNZ2 BPZ SkyNet n(z)TPZ Cosmos 0.0 0.2 0.8 1.0 1.2 1.6 1.8 0.4 0.6 1.4 Redshift (z)

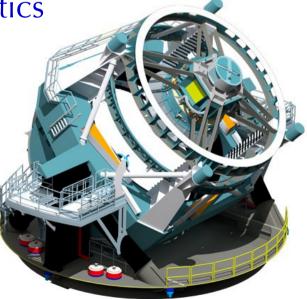
Uncertainties in N(z) highly uncertain


• Training set

- Small spectroscopic sample
 - 50M spectra, 20 B galaxies
- Different **coverage** in parameter space

Example 2 : time domain classification

A road map for ML light curve classification:



Announcement : Plasticc Photometric LSST Astronomical Time-Series Classification Challenge

Emmanuel Gangler – MAESTRO 17

Conclusions

- LSST will provide unprecedented data
 - Opens up time domain
 - ... and a LOT of scientific opportunities
- Proper knowledge on how to use these data needed
 - Training of students
 - IT cross-disciplinary field : astroinformatics
 - New ideas are welcomed !
- Data access has to be organized
 - A European DAC center is under study
 - Goal is to serve a broad community

